李晓锋
个人信息Personal Information

性别:

职称: 研究员

职务:

学历: 博士研究生

电话:

传真:

电子邮件: xfli@whrsm.ac.cn

通讯地址:

湖北省武汉市武昌区水果湖街小洪山2号 中国科学院武汉岩土力学研究所

简 历Personal Profile

  • 李晓锋,研究员,博士生导师。国家海外高层次青年人才计划入选者,湖北省创新人才计划入选中国岩石力学与工程学会岩石动力学专委会委员,副秘书长。2013年于武汉大学获土木工程学士学位2019毕业于中国科学院大学获岩土工程博士学位,2017-2019年在澳大利亚莫纳什大学开展合作研究。先后于2020-2023年在香港理工大学土木与环境工程系和加拿大多伦多大学土木与矿业工程学院从事博士后研究。

    主要研究方向为岩石动态力学特性实验技术和分析理论以及连续非连续计算方法。针对爆破、冲击或地震荷载作用下岩体工程动力响应评价和安全控制等难题,研发了岩石动态力学特性实验测试技术,提出了岩石动态变形非线性率效应理论模型;建立了考虑随机微裂隙相互作用的岩石统一动态强度模型,提出了岩石材料动态强度参数推荐取值方法,解决了岩石材料动态力学强度的应变速率效应统一描述及参数推荐取值难题;提出了岩石动态破裂特征的数值分析方法,自主研发了OpenFDEM大型连续非连续数值仿真平台(www.openfdem.com)形成了2D/3D、热、流体、爆炸、颗粒离散元、相场及CFD等求解器集成的免费计算平台,解决THM多物理场耦合、流固耦合CFD、爆轰气体锲入及高性能并行计算等难题,实现了岩体连续非连续破碎过程及爆破诱发灾害的精细化仿真,为大型工程岩体动态响应和安全评价提供了平台。

    发表SCI/EI学术论文50余篇,以第一/通讯作者身份在《Comput. Method. Appl. M.》、《Int. J. Rock Mech. Min.》、《Rock Mech. Rock Eng.》等期刊发表SCI论文28篇,ESI高被引论文3篇,1篇论文入选2020年度陈宗基讲座优秀论文,2篇论文入选中国精品科技期刊领跑者5000,发表论文SCI严格他引1049(截止20241),授权发明专利12项,软件著作权11。先后获湖北省科技进步一等奖1(2/15),中国岩石力学与工程学会自然科学一等奖1项(2/4)。入选斯坦福2023全球前2%顶尖科学家年度影响力榜单”、2019年度中国科学院院长特别奖、2020年度中国科学院百篇优秀博士论文、2020年度中国岩石力学与工程学会优秀博士论文、2021年度国际岩石力学学会罗哈奖银奖、2022年度美国岩石力学学会未来领袖计划等。担任J Geophys Res-Sol Ea; Extreme Mech Lett; Int J Mech Sci; Rock Mech Rock Eng; Tunn Undergr Sp Tech; Int J Rock Mech Min30余个主流SCI期刊审稿人。

    详细内容:www.xiaofengli-fdem.com

  • 研究方向Research Focus
  • 社会任职Social Service
  • 承担科研项目情况Undertaking Research Projects
  • 1、 岩石动态力学特性实验技术及分析理论

    2、 连续非连续计算方法及高性能国产CAE软件开发

    3、 深部岩体工程安全与灾害防控技术

  • 1、国际岩石力学学会(ISRM),会员,Rocha Medal Runner Up

    2、中国岩石力学与工程学会岩石动力学专委会(CSRME),委员,副秘书长

    3、美国岩石力学学会(ARMA),会员,Future Leader

    4、国际冲击工程学会(ISIE),会员

    4、《Journal of Rock Mechanics and Geotechnical Engineering》科学编辑

    5、国际岩石力学学会第11届亚洲会议分会场秘书

    6、2022年国际连续非连续方法研讨会联合主席

  • 1、国家海外高层次青年人才计划, 项目负责人,执行时间:2024-2026

    2、湖北省创新人才计划, 项目负责人,执行时间:2024-2026

  • 代表论著Representative Treatises
  • 获奖及荣誉Awards and Honors
  • [1] Li XF, Li, HB, Liu, YQ, Zhou, QC, Xia, X. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnelling and Underground Space Technology, 2016, 53, 96-108

    [2] Li XF, Li HB, Zhao J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock. Computers and Geotechnics, 2017, 90: 96-112

    [3] Li XF, Li HB, Li JC, Li ZW. Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mechanics and Rock Engineering, 2018, 51: 2373–2393

    [4] Li XF, Li X, Li HB, Zhang QB, Zhao J. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. International Journal of Impact Engineering, 2018, 118: 98-118

    [5] Li XF, Li HB, Zhang QB, Jiang JJ, Zhao J. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Engineering Fracture Mechanics, 2018. 199:739–59

    [6] Li XF, Li HB, Li JC, Zhao J. Effect of joint thickness on seismic response across a filled rock fracture. G otechnique Letters, 2018, 8(3): 190-194

    [7] Li XF, Zhang QB, Li HB, Zhao J. Grain-based discrete element method modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mechanics and Rock Engineering, 2018; 51: 3785–3817

    [8] Li XF, Li HB, Zhang GK. Damage assessment and blast vibrations controlling considering rock properties of underwater blasting. International Journal of Rock Mechanics and Mining Sciences, 2019, 121: 104045

    [9] Li XF, Li HB, Zhao J. The role of transgranular capability in grain-based modelling of crystalline rocks. Computers and Geotechnics, 2019, 110: 161-183

    [10] Li XF, Li HB, Liu LW, Liu YQ, Ju MH, Zhao J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104219

    [11] Li XF, Li HB, Zhao J. Transgranular fracturing of crystalline rocks and its influence on rock strengths: insights from a grain-scale continuum-discontinuum approach. Computer Methods in Applied Mechanics and Engineering. 373:113462, 2020

    [12] Li XF, Li H, Zhang G, Ju M, Zhao J. Rate dependency mechanism of crystalline rocks induced by impacts: insights from grain-scale fracturing and micro heterogeneity. International Journal of Impact Engineering. 2021. 2021;155:103855.

    [13] Li X, Li XF*, Zhang QB, Zhao J. A numerical study of spalling and related rockburst under dynamic disturbance using a particle-based numerical manifold method (PNMM). Tunnelling and Underground Space Technology, 2018, 81: 438-449

    [14] Zhang GK, Li HB, Wang MY, Li XF*. Crack initiation of granite under uniaxial compression tests: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering. 2020, 12(3) 656-666

    [15] Liu LW, Li HB, Li XF*, Wu RJ. Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression. Bulletin of Engineering Geology and the Environment, 2020: 79, 3145-3161

    [16] Wu RJ, Li HB, Li XF*, Xia X, Liu LW. Experimental study and numerical simulation on dynamic behaviour of transversely isotropic phyllite, International Journal of Geomechanics, 2020, 1943-5622

    [17] Liu LW, Li HB, Li XF*, Wu D, Zhang GK. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: insights from digital image correlation (DIC) analysis. Rock Mechanics and Rock Engineering, 2020: 1-17

    [18] Liu LW, Li HB, Li XF*, Zhou CB, Zhang GK. Simulation on heterogeneous rocks with a flaw using grain-based discrete-element method. G otechnique Letters, 2021; 11:55–65

    [19] Zhang GK, Wang MY, Li XF*, Yue SL, Wen Z, Han ST. Micro- and macrocracking behaviors in granite and molded gypsum containing a single flaw. Construction and Building Materials. 2021; 292:123452.

    [20] Wang B, Li HB, Shao ZS, Chen SH, Li XF*. Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method. Computers and Geotechnics, 2021;140:104445

    [21] Ju MH, Li XF*, Li X, Zhang GL. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism. Engineering Fracture Mechanics, 2022;263:108297.

    [22] Wang B, Li HB, Xing HZ, Li XF*, Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method. Engineering Analysis with Boundary Elements, 2022 144:409–421

    [23] Liu LW, Li HB, Li XF*. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression. Journal of Rock Mechanics and Geotechnical Engineering, 2022

    [24] Li HB, Li XF, Li JC, Xia X, Wang XW. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency. Earthquake Engineering and Engineering Vibration, 2016, 15(1):153–62

    [25] Ju MH, Li JC, Li XF, Zhao J. Fracture surface morphology of brittle geomaterials influenced by loading rate and grain size. International Journal of Impact Engineering, 2019, 133: 103363

    [26] Ju MH, Li JC, Yao QL, Li XF, Zhao J. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods. Engineering Fracture Mechanics, 2019, 219: 106537 

    [27] Ju MH, Li XF, Li JC. Large-scale asymmetric pulverisation of fault zone: Insights from rock axial strain in static and dynamic loading conditions. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104557

    [28] Xing HZ, Wang MY, Ju MH, Li JC, Li XF. Measurement of ejection velocity of rock fragments under dynamic compression and insight into energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 2022;149:104992.

    [29] Li HB, Liu LW, Fu SY, Liu, B, Li XF. Rate-dependent strength and crack damage thresholds of rocks at intermediate strain rate. International Journal of Rock Mechanics and Mining Sciences, 2023, 171, 105590.

    [30] 李晓锋, 李海波, 夏祥, 刘博, 冯海鹏. 类节理岩石直剪试验力学特性的数值模拟研究. 岩土力学, 2016, 37(2), 583-591 (F5000 论文)

    [31] 李晓锋,李海波,张乾兵,赵坚.冲击荷载作用下岩石动态力学特性及破裂特征研究. 岩石力学与工程学报, 2017, 36(10): 2393-2405 (陈宗基优秀论文奖, F5000 论文)

    [32] 李晓锋. 强冲击荷载下岩石材料断裂及破碎机制研究. 岩石力学与工程学报, 2020, 40(2): 432-432

  • 1核电工程岩体爆破动力灾害防控理论及关键技术,湖北省人民政府,科技进步一等奖 2/15),2020

    2、岩石动态变形破坏过程和强度特征分析理论与方法,中国岩石力学与工程学会,自然科学一等奖 2/4,2023

    3、国际岩石力学学会罗哈奖银奖 (国家小组历史上第二人次),2021

    4美国岩石力学学会未来领袖计划 (平均每年全球不超过10人),2022

    5、中国科学院百篇优秀博士论文,2020

    6、中国岩石力学与工程学会优秀博士论文奖(排第1),2020

    7中国科学院院长特别奖,2019

研究方向Research Focus

1、 岩石动态力学特性实验技术及分析理论

2、 连续非连续计算方法及高性能国产CAE软件开发

3、 深部岩体工程安全与灾害防控技术

社会任职Social Service

1、国际岩石力学学会(ISRM),会员,Rocha Medal Runner Up

2、中国岩石力学与工程学会岩石动力学专委会(CSRME),委员,副秘书长

3、美国岩石力学学会(ARMA),会员,Future Leader

4、国际冲击工程学会(ISIE),会员

4、《Journal of Rock Mechanics and Geotechnical Engineering》科学编辑

5、国际岩石力学学会第11届亚洲会议分会场秘书

6、2022年国际连续非连续方法研讨会联合主席

承担科研项目情况Undertaking Research Projects

1、国家海外高层次青年人才计划, 项目负责人,执行时间:2024-2026

2、湖北省创新人才计划, 项目负责人,执行时间:2024-2026

代表论著Representative Treatises

[1] Li XF, Li, HB, Liu, YQ, Zhou, QC, Xia, X. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnelling and Underground Space Technology, 2016, 53, 96-108

[2] Li XF, Li HB, Zhao J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock. Computers and Geotechnics, 2017, 90: 96-112

[3] Li XF, Li HB, Li JC, Li ZW. Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mechanics and Rock Engineering, 2018, 51: 2373–2393

[4] Li XF, Li X, Li HB, Zhang QB, Zhao J. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. International Journal of Impact Engineering, 2018, 118: 98-118

[5] Li XF, Li HB, Zhang QB, Jiang JJ, Zhao J. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Engineering Fracture Mechanics, 2018. 199:739–59

[6] Li XF, Li HB, Li JC, Zhao J. Effect of joint thickness on seismic response across a filled rock fracture. G otechnique Letters, 2018, 8(3): 190-194

[7] Li XF, Zhang QB, Li HB, Zhao J. Grain-based discrete element method modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mechanics and Rock Engineering, 2018; 51: 3785–3817

[8] Li XF, Li HB, Zhang GK. Damage assessment and blast vibrations controlling considering rock properties of underwater blasting. International Journal of Rock Mechanics and Mining Sciences, 2019, 121: 104045

[9] Li XF, Li HB, Zhao J. The role of transgranular capability in grain-based modelling of crystalline rocks. Computers and Geotechnics, 2019, 110: 161-183

[10] Li XF, Li HB, Liu LW, Liu YQ, Ju MH, Zhao J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104219

[11] Li XF, Li HB, Zhao J. Transgranular fracturing of crystalline rocks and its influence on rock strengths: insights from a grain-scale continuum-discontinuum approach. Computer Methods in Applied Mechanics and Engineering. 373:113462, 2020

[12] Li XF, Li H, Zhang G, Ju M, Zhao J. Rate dependency mechanism of crystalline rocks induced by impacts: insights from grain-scale fracturing and micro heterogeneity. International Journal of Impact Engineering. 2021. 2021;155:103855.

[13] Li X, Li XF*, Zhang QB, Zhao J. A numerical study of spalling and related rockburst under dynamic disturbance using a particle-based numerical manifold method (PNMM). Tunnelling and Underground Space Technology, 2018, 81: 438-449

[14] Zhang GK, Li HB, Wang MY, Li XF*. Crack initiation of granite under uniaxial compression tests: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering. 2020, 12(3) 656-666

[15] Liu LW, Li HB, Li XF*, Wu RJ. Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression. Bulletin of Engineering Geology and the Environment, 2020: 79, 3145-3161

[16] Wu RJ, Li HB, Li XF*, Xia X, Liu LW. Experimental study and numerical simulation on dynamic behaviour of transversely isotropic phyllite, International Journal of Geomechanics, 2020, 1943-5622

[17] Liu LW, Li HB, Li XF*, Wu D, Zhang GK. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: insights from digital image correlation (DIC) analysis. Rock Mechanics and Rock Engineering, 2020: 1-17

[18] Liu LW, Li HB, Li XF*, Zhou CB, Zhang GK. Simulation on heterogeneous rocks with a flaw using grain-based discrete-element method. G otechnique Letters, 2021; 11:55–65

[19] Zhang GK, Wang MY, Li XF*, Yue SL, Wen Z, Han ST. Micro- and macrocracking behaviors in granite and molded gypsum containing a single flaw. Construction and Building Materials. 2021; 292:123452.

[20] Wang B, Li HB, Shao ZS, Chen SH, Li XF*. Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method. Computers and Geotechnics, 2021;140:104445

[21] Ju MH, Li XF*, Li X, Zhang GL. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism. Engineering Fracture Mechanics, 2022;263:108297.

[22] Wang B, Li HB, Xing HZ, Li XF*, Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method. Engineering Analysis with Boundary Elements, 2022 144:409–421

[23] Liu LW, Li HB, Li XF*. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression. Journal of Rock Mechanics and Geotechnical Engineering, 2022

[24] Li HB, Li XF, Li JC, Xia X, Wang XW. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency. Earthquake Engineering and Engineering Vibration, 2016, 15(1):153–62

[25] Ju MH, Li JC, Li XF, Zhao J. Fracture surface morphology of brittle geomaterials influenced by loading rate and grain size. International Journal of Impact Engineering, 2019, 133: 103363

[26] Ju MH, Li JC, Yao QL, Li XF, Zhao J. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods. Engineering Fracture Mechanics, 2019, 219: 106537 

[27] Ju MH, Li XF, Li JC. Large-scale asymmetric pulverisation of fault zone: Insights from rock axial strain in static and dynamic loading conditions. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104557

[28] Xing HZ, Wang MY, Ju MH, Li JC, Li XF. Measurement of ejection velocity of rock fragments under dynamic compression and insight into energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 2022;149:104992.

[29] Li HB, Liu LW, Fu SY, Liu, B, Li XF. Rate-dependent strength and crack damage thresholds of rocks at intermediate strain rate. International Journal of Rock Mechanics and Mining Sciences, 2023, 171, 105590.

[30] 李晓锋, 李海波, 夏祥, 刘博, 冯海鹏. 类节理岩石直剪试验力学特性的数值模拟研究. 岩土力学, 2016, 37(2), 583-591 (F5000 论文)

[31] 李晓锋,李海波,张乾兵,赵坚.冲击荷载作用下岩石动态力学特性及破裂特征研究. 岩石力学与工程学报, 2017, 36(10): 2393-2405 (陈宗基优秀论文奖, F5000 论文)

[32] 李晓锋. 强冲击荷载下岩石材料断裂及破碎机制研究. 岩石力学与工程学报, 2020, 40(2): 432-432

获奖及荣誉Awards and Honors

1核电工程岩体爆破动力灾害防控理论及关键技术,湖北省人民政府,科技进步一等奖 2/15),2020

2、岩石动态变形破坏过程和强度特征分析理论与方法,中国岩石力学与工程学会,自然科学一等奖 2/4,2023

3、国际岩石力学学会罗哈奖银奖 (国家小组历史上第二人次),2021

4美国岩石力学学会未来领袖计划 (平均每年全球不超过10人),2022

5、中国科学院百篇优秀博士论文,2020

6、中国岩石力学与工程学会优秀博士论文奖(排第1),2020

7中国科学院院长特别奖,2019