
性别: 男
职称: 研究员
职务:
学历: 博士研究生
电话:
传真:
电子邮件: xfli@whrsm.ac.cn
通讯地址:
湖北省武汉市武昌区水果湖街小洪山2号 中国科学院武汉岩土力学研究所

-
李晓锋,研究员,博士生导师。国家海外高层次青年人才计划和湖北省创新人才计划入选者。中国岩石力学与工程学会岩石动力学专委会委员,副秘书长。2013年毕业于武汉大学,获土木工程学士学位。2019年毕业于中国科学院大学(武汉岩土力学研究所),获岩土工程博士学位。2017-2023年先后在Monash University,The Hong Kong Polytechnic University,University of Toronto学习和工作。
主要研究方向为岩石强动力学特性实验测试技术与分析理论及高性能工程软件开发与应用。针对爆破、强冲击(外部武器打击、内爆)或地震强荷载作用下岩体工程动力响应评价和安全控制等难题,研发了系列岩石强动载宽应变速率动态力学特性实验测试技术与装置,提出了岩石动态变形非线性率效应理论;建立了考虑随机微裂隙相互作用的岩石统一动态强度模型,提出了岩石材料动态强度力学参数推荐取值方法,解决了岩石材料动态力学强度的应变速率效应统一描述及参数推荐取值难题;提出了岩石动态破裂特征多尺度数值分析方法,自主研发了OpenFDEM连续-非连续数值仿真平台(www.openfdem.com),形成了2D/3D、热、流体、爆炸、颗粒离散元、相场及CFD等求解器集成的免费计算平台,解决了THM多物理场耦合、流固耦合、爆轰气体锲入及高性能并行计算等难题,实现了岩体连续非连续破碎过程及爆破诱发动力灾害的精细化仿真,为大型工程岩体动态响应分析和安全评价提供了平台。
发表SCI/EI学术论文80余篇,以第一/通讯作者身份在《Comput. Method. Appl. M.》、《Int. J. Rock Mech. Min.》、《Rock Mech. Rock Eng.》等期刊发表SCI/EI论文38篇,ESI高被引论文3篇,1篇论文入选2020年度陈宗基讲座优秀论文,2篇论文入选中国精品科技期刊“领跑者5000”,Google学术引用2400次(截止2025年4月),授权发明专利20项,软件著作权15项,出版中英文专著1部,参编行业学会标准2部。先后获湖北省科技进步一等奖1项(2/15),中国岩石力学与工程学会自然科学一等奖1项(2/4)。入选斯坦福2023、2024年全球前2%顶尖科学家“年度影响力榜单”、2024年度中国知网高被引学者Top 1%。获2019年度中国科学院院长特别奖、2020年度中国科学院百篇优秀博士论文、2020年度中国岩石力学与工程学会优秀博士论文、2021年度国际岩石力学学会罗哈奖银奖、2022年度美国岩石力学学会未来领袖计划等。
1、岩石动力学基础理论与测试技术
2、高性能大型工程软件开发与应用(OpenFDEM)
3、新型非爆破岩理论与智能钻爆
4、深部岩体工程安全与动力灾害防控技术
1、国际岩石力学学会(ISRM),会员,Rocha Medal Runner Up
2、中国岩石力学与工程学会岩石动力学专委会(CSRME),委员,副秘书长
3、美国岩石力学学会(ARMA),会员,Future Leader4、国际冲击工程学会(ISIE),会员
4、《Journal of Rock Mechanics and Geotechnical Engineering》科学编辑
5、国际岩石力学学会第11届亚洲会议分会场秘书
6、2022年国际连续非连续方法研讨会联合主席
7、美国岩石力学学会未来领袖计划遴选委员会委员
1、国家海外高层次青年人才计划, 项目负责人,执行时间:2024.01-2026.12
2、湖北省创新人才计划,项目负责人,执行时间:2024.01-2026.12
3、湖北省武汉市自然科学基金特区计划,项目负责人,执行时间:2024.01-2026.12
4、湖北省-中国科学院合作专项,项目负责人,执行时间:2024.01-2025.12
5、岩石力学与工程安全全国重点实验室揭榜挂帅项目,项目负责人,执行时间:2024.01-2025.12
5、国际合作项目DECOVALEX-2027,Task F“HyMAR -Hydro-Micromechanics of Argillaceous Rocks”(中方负责人之一)。执行时间:2023.1-2027.12
6、中国科学院计划科技平台专项,科研机构改善科研条件修缮项目,超临界二氧化碳冲击破岩多功能实验系统,执行负责人,执行时间:2024.01- 2024.12
7、湖北省科技创新人才计划-战略科技人才培育项目,深部地下洞室(群)钻爆开挖稳定机制与安全调控,执行负责人,执行时间:2024.01-2025.12
[1] Li Xiaofeng,Li Haibo,Liu Yaqun,Zhou Qingchun,Xia Xiang. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnelling and Underground Space Technology,2016,53,96-108
[2] Li Xiaofeng,Li Haibo,Zhao Jian. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock. Computers and Geotechnics,2017,90: 96-112
[3] Li Xiaofeng,Li Haibo,Li Jianchun,Li Zhiwen. Research on transient wave propagation across nonlinear joints filled with granular materials. Rock Mechanics and Rock Engineering,2018,51: 2373–2393
[4] Li Xiaofeng,Li Xing,Li Haibo,Zhang Qianbing,Zhao Jian. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. International Journal of Impact Engineering,2018,118: 98-118
[5] Li Xiaofeng,Li Haibo,Zhang Qianbing,Jiang Jinglin,Zhao Jian. Dynamic fragmentation of rock material: characteristic size,fragment distribution and pulverization law. Engineering Fracture Mechanics,2018. 199:739–59
[6] Li Xiaofeng,Li Haibo,Li Jianchun,Zhao Jian. Effect of joint thickness on seismic response across a filled rock fracture. Géotechnique Letters,2018,8(3):190-194
[7] Li Xiaofeng,Zhang Qianbing,Li Haibo,Zhao Jian. Grain-based discrete element method modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mechanics and Rock Engineering,2018;51: 3785–3817
[8] Li Xiaofeng,Li Haibo,Zhang Guokai. Damage assessment and blast vibrations controlling considering rock properties of underwater blasting. International Journal of Rock Mechanics and Mining Sciences,2019,121: 104045
[9] Li Xiaofeng,Li Haibo,Zhao Jian. The role of transgranular capability in grain-based modelling of crystalline rocks. Computers and Geotechnics,2019,110: 161-183
[10] Li Xiaofeng,Li Haibo,Liu Liwang,Liu Yaqun,Ju Minghe,Zhao Jian. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. International Journal of Rock Mechanics and Mining Sciences,2020,127: 104219
[11] Li Xiaofeng,Li Haibo,Zhao Jian. Transgranular fracturing of crystalline rocks and its influence on rock strengths: insights from a grain-scale continuum-discontinuum approach. Computer Methods in Applied Mechanics and Engineering. 373:113462,2020
[12] Li Xiaofeng,Li Haibo,Zhang Guokai,Ju Minghe,Zhao Jian. Rate dependency mechanism of crystalline rocks induced by impacts: insights from grain-scale fracturing and micro heterogeneity. International Journal of Impact Engineering. 2021. 2021;155:103855.
[13] Li Xing,Li Xiaofeng*,Zhang Qianbing,Zhao Jian. A numerical study of spalling and related rockburst under dynamic disturbance using a particle-based numerical manifold method (PNMM). Tunnelling and Underground Space Technology,2018,81: 438-449
[14] Zhang Guokai,Li Haibo,Wang Mingyang,Li Xiaofeng*. Crack initiation of granite under uniaxial compression tests: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering. 2020,12(3) 656-666
[15] Liu Liwang,Li Haibo,Li Xiaofeng*,Wu Renjie. Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression. Bulletin of Engineering Geology and the Environment,2020: 79,3145-3161
[16] Wu Renjie,Li Haibo,Li Xiaofeng*,Xia Xiang,Liu Liwang. Experimental study and numerical simulation on dynamic behaviour of transversely isotropic phyllite,International Journal of Geomechanics,2020,1943-5622
[17] Liu Liwang,Li Haibo,Li Xiaofeng*,Wu Di,Zhang Guokai. Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: insights from digital image correlation (DIC) analysis. Rock Mechanics and Rock Engineering,2020: 1-17
[18] Liu Liwang,Li Haibo,Li Xiaofeng*,Zhou Chuanbo,Zhang Guokai. Simulation on heterogeneous rocks with a flaw using grain-based discrete-element method. Géotechnique Letters,2021;11:55–65
[19] Zhang Guokai,Wang MY,Li Xiaofeng*,Yue Songlin,Wen Zhu,Han Songtong. Micro- and macrocracking behaviors in granite and molded gypsum containing a single flaw. Construction and Building Materials. 2021;292:123452.
[20] Wang Beng,Li Haibo,Shao Zhushan,Chen Shihai,Li Xiaofeng*. Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method. Computers and Geotechnics,2021;140:104445
[21] Ju Minghe,Li Xiaofeng*,Li Xing,Zhang Guanglei. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism. Engineering Fracture Mechanics, 2022;263:108297.
[22] Wang Beng,Li Haibo,Xing Haozhe,Li Xiaofeng*, Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method. Engineering Analysis with Boundary Elements,2022 144:409–421
[23] Liu Liwang,Li Haibo,Li Xiaofeng*. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(6):2034-2057
[24] Li Qian,Li Haibo,Fu Shuaiyang,Li Xiaofeng*. The effect of in-situ stress on blast-induced rock fracture and damage zone. Tunnelling and Underground Space Technology,154,106091,2024
[25] Fu Shuaiyang,Li Haibo,Liu Liwang,Li Qian,Li Xiaofeng*,Study on the characteristics of blast-induced damage zone by using the wave velocity field inversion technique,Computers and Geotechnics, 176,2024,106808
[26] Liu Liwang,Li Haibo,Zhang Guokai,Fu Shuaiyang,Li Xiaofeng*. Investigation on Rate Dependency of Acoustic Emission Behaviours of Sandstone Under Quasi-Dynamic Uniaxial Compression. Rock Mechanics and Rock Engineering,1-14,2025.
[27] Liu Liwang,Li Haibo,Wang Mingyang.,Zhang Guokai*,Sui Yaguang,Li Xiaofeng*. Numerical investigation on quasi-dynamic behaviours of fractured rocks under uniaxial compression using new rate-dependent contact models. Engineering Analysis with Boundary Elements,176,106268,2025.
[28] Li Haibo,Li Xiaofeng,Li Jianchun,Xia Xiang,Wang Xiaowei. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency. Earthquake Engineering and Engineering Vibration,2016,15(1):153–62
[29] Ju Minghe,Li Jianchun,Li Xiaofeng,Zhao Jian. Fracture surface morphology of brittle geomaterials influenced by loading rate and grain size. International Journal of Impact Engineering,2019,133: 103363
[30] Ju Minghe,Li Jianchun,Yao Qiangling, Li Xiaofeng, Zhao Jian. Rate effect on crack propagation measurement results with crack propagation gauge,digital image correlation,and visual methods. Engineering Fracture Mechanics,2019,219: 106537
[31] Ju Minghe,Li Xiaofeng,Li Jianchun. Large-scale asymmetric pulverisation of fault zone: Insights from rock axial strain in static and dynamic loading conditions. International Journal of Rock Mechanics and Mining Sciences, 2021,137: 104557
[32] Xing Haozhe,Wang Mingyang,Ju Minghe,Li Jianchun,Li Xiaofeng. Measurement of ejection velocity of rock fragments under dynamic compression and insight into energy partitioning. International Journal of Rock Mechanics and Mining Sciences, 2022;149:104992.
[33] Li Xing,Pan Cheng,Li Xiaofeng,Shao Chengmeng,Li Haibo. Application of a synthetic rock mass approach to the simulation of blasting-induced crack propagation and coalescence in deep fractured rock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022,8(2),57.
[34] Li Haibo,Liu Liwang,Fu Shuaiyang,Liu Bo,Li Xiaofeng. Rate-dependent strength and crack damage thresholds of rocks at intermediate strain rate. International Journal of Rock Mechanics and Mining Sciences, 2023,171,105590.
[35] Li Yiming, Zhao Gaofeng, Jiao Yuyong, Yan Chengzeng, Wang Xun, Shen Luming, Yang Lei, Liang Zhengzhao, Li Wanrun, Zhou Xiaoxiong, Li Xiaofeng,Liu Feng, Zhang Kaiyu, Li Xing, Pan Cheng, Le Tiancheng. A benchmark study of different numerical methods for predicting rock failure. International Journal of Rock Mechanics and Mining Sciences, 2023,166,105381.
[36] Lu Ang,Yan Peng,Lu Wenbo,Li Xiaofeng,Liu Xiao,Luo Sheng,Huang Shuiling, Grasselli Giovanni. Crack propagation mechanism of smooth blasting holes for tunnel excavation under high in-situ stress. Engineering Fracture Mechanics, 304,110144,2024.
[37] 李晓锋,李海波,夏祥,刘博,冯海鹏. 类节理岩石直剪试验力学特性的数值模拟研究. 岩土力学, 2016,37(2),583-591 (F5000 论文)
[38] 张国凯,李海波,夏祥,李俊如,李晓锋,宋涛.岩石细观结构及参数对宏观力学特性及破坏演化的影响.岩石力学与工程学报,2016,35(07),1341-1352.
[39] 李晓锋,李海波,刘凯,张乾兵,邹飞,黄理兴,Zhao Jian. 冲击荷载作用下岩石动态力学特性及破裂特征研究. 岩石力学与工程学报,2017,36(10):2393-2405 (陈宗基优秀论文奖, F5000 论文)
[40] 武仁杰,李海波,李晓锋,岳好真,于崇,夏祥.不同冲击载荷下层状千枚岩压缩力学特性研究.岩石力学与工程学报,2019,38(S2),3304-3312.
[41] 张国凯,李海波,王明洋, 李晓锋.基于声学测试和摄像技术的单裂隙岩石裂纹扩展特征研究.岩土力学,2019,40(S1),63-72+81.
[42] 张国凯,李海波,王明洋,李晓锋.单裂隙花岗岩破坏强度及裂纹扩展特征研究.岩石力学与工程学报,2019,38(S1),2760-2771.
[43] 李晓锋. 强冲击荷载下岩石材料断裂及破碎机制研究. 岩石力学与工程学报,2020,40(2):432-432
[44] 刘黎旺,李海波,李晓锋,张国凯, 武仁杰.基于矿物晶体模型非均质岩石单轴压缩力学特性研究.岩土工程学报,2020,42(03),542-550.
[45] 武仁杰,李海波,李晓锋,于崇,夏祥, 刘黎旺. 冲击载荷作用下层状岩石破碎能耗及块度特征.煤炭学报,2020,45(03),1053-1060.
[46] 鞠明和,陶泽军,李晓锋,蔚立元,姜礼杰, 李晓昭.粒子重复冲击破岩细观损伤及破碎特征试验研究.岩土力学,2022,43(12),3281-3293.
[47] 傅帅旸,李海波, 李晓锋.基于DIC方法与声发射的花岗岩断裂过程区范围研究.岩石力学与工程学报,2022,41(12),2497-2508.
[48] 傅帅旸,李海波,吴迪,王犇,刘黎旺, 李晓锋.基于波速场反演的爆破损伤区范围界定研究.岩石力学与工程学报,2024,43(S1),3257-3266.
[49] 李海波,刘黎旺,李晓锋,刘博,李俊如.全伺服式中等应变率三轴试验系统的研制及应用.岩石力学与工程学报,2022,41(02),217-227.
[50] 李志文,李潜,徐斌,李晓锋*, 李海波.反平面线源荷载作用下浅埋圆形非完全粘结隧道动力响应研究.爆炸与冲击,2024,44(08),62-73.
[51] 李潜,李海波,傅帅旸,鞠明和, 李晓锋*.高地应力下双孔爆破成缝最优孔间距研究.岩石力学与工程学报,2025,44(03),678-690.
[52] 何立恒,李海波,李潜,李晓锋*. 岩石 Mott 环自由膨胀动态破碎特征研究. 力学学报, 2025,57(2),1-14.
[53] 非均质岩石动态断裂与破碎过程的裂纹演化规律研究. 鞠明和,李晓锋,徐州:中国矿业大学出版社,ISBN 978-7-5646-6396-4
1、核电工程岩体爆破动力灾害防控理论及关键技术,湖北省人民政府,科技进步一等奖(2/15),2020
2、岩石动态变形破坏过程和强度特征分析理论与方法,中国岩石力学与工程学会,自然科学一等奖(2/4),2023
3、国际岩石力学学会罗哈奖银奖(国家小组历史上第二人次),2021
4、美国岩石力学学会未来领袖计划(平均每年全球不超过10人),2022
5、中国科学院百篇优秀博士论文(1/80),2020
6、中国岩石力学与工程学会优秀博士论文奖(排第1),2020
7、中国科学院院长特别奖(1/50),2019