常鑫
个人信息Personal Information

性别:

职称: 副研究员

职务:

学历: 博士研究生

电话: 027-87197932

传真:

电子邮件: xchang@whrsm.ac.cn

通讯地址:

湖北省武汉市武昌区水果湖街小洪山2号 中国科学院武汉岩土力学研究所

简 历Personal Profile

  • 常鑫,男,1987年10月生,博士,副研究员。2016年7月获得中国石油大学(华东)油气井工程博士学位。2016年7月-2018年12月在中国科学院武汉岩土力学研究所开展博士后研究工作。2018年12月入职至今,历任助理研究员(2018年12月-2024年12月)、副研究员(2024年12月-至今)。

    主要从事页岩气、致密气和干热岩等非常规储层压裂改造基础理论和实验方法的研究工作。主持国家自然科学基金青年项目、页岩油气富集机理与高效开发全国重点实验室开发基金项目等纵向课题4项,参与国家科技重大专项、国家自然基金面上项目、湖北省自然基金联合基金项目等纵向课题10余项。主持/参与企业委托课题20余项。发表SCI/EI收录论文40余篇,其中第一作者/唯一通讯作者论文20篇。授权国家发明专利20余项,其中第一发明人授权国家发明专利9项。以第一权利人登记软件著作权2项。2019年获湖北省科技进步二等奖(排名第10),2023年获中国岩石力学与工程学会科技进步二等奖(排名第3),2024年获湖北省科技进步二等奖(排名第3)和四川省石油天然气科学技术一等奖(排名第4)。入选江苏省院士“双创团队”。担任国家自然基金委评审专家,International Journal of Coal Science & Technology科学编辑,International Journal of Mining Science and TechnologyJournal of Rock Mechanics and Geotechnical EngineeringTheoretical and Applied Fracture MechanicsFUEL、Geoenergy Science and EngineeringPetroleum Science和SPE Journal等20余本行业权威期刊审稿人。


  • 研究方向Research Focus
  • 社会任职Social Service
  • 承担科研项目情况Undertaking Research Projects
  • 1、非常规储层岩石力学及地应力测试

    2水力压裂裂缝起裂与扩展机理研究

    3深部岩体多场耦合损伤断裂机制及数值软件研发

    4页岩气、煤层气吸附变形机理研究


  • 《International Journal of Coal Science & Technology》科学编辑

  • [1] 国家重点研发项目子课题:地质储氢库适用性及安全关键技术,2024-12至2027-11,160万,在研,主持

    [2] 国家自然科学基金青年项目:深层页岩暂堵压裂水力裂缝封堵机理及其转向扩展规律研究,2022-1至2024-12,30万,在研,主持

    [3] 页岩油气富集机理与高效开发全国重点实验室开发基金项目:深层页岩多场耦合作用下压裂复杂缝网成缝机制研究,2020-1至2020-12,15万,结题,主持

    [4] 国家能源页岩油研发中心开放基金项目:盐岩溶解、结晶及蠕变特性对盐间页岩油储层改造效果的影响机理研究,2018-12至2019-12,30万,结题,主持

    [5] 中石化石油工程技术研究院项目:高温岩体岩石力学及裂缝扩展规律研究,2023-1至2024-12,185万元,在研,主持

    [6] 中石化江汉油田石油工程技术研究院项目:侏罗系陆相页岩水压物模试验及造缝机理研究,2022-1至2022-12,71万元,结题,主持

    [7] 中石油大庆油田勘探院开发研究院项目:基于地质力学的泥页岩可压性评价技术研究,2024-1至2024-12,94万元,在研,主持

    [8] 中石化石油勘探开发研究院项目:四川盆地低渗透储层岩石力学参数及地应力分析,2023-1至2024-12,66万元,在研,主持

    [9] 中石油勘探开发研究院项目:深层页岩高温高压岩石力学及均衡低风险改造控制机理研究,2023-1至2023-12,37万元,结题,主持

    [10] 中石油西南油气田公司项目:深层页岩岩石力学基础理论及压裂工艺优化研究,2021-1至2024-12,1378万元,在研,骨干


  • 代表论著Representative Treatises
  • 获奖及荣誉Awards and Honors
  • [1] Chang X#,Xu E,Guo Y,et al. Experimental study of hydraulic fracture initiation and propagation in deep shale with different injection methods[J]. Journal of Petroleum Science and Engineering,2022,216: 110834.

    [2] Qiu G, Chang X#,Li J,et al. Study on the interaction between hydraulic fracture and natural fracture under high stress[J]. Theoretical and Applied Fracture Mechanics,2024,130: 104259.

    [3]Chang X#,Wang X,Yang C,et al. Simulation and optimization of fracture pattern in temporary plugging fracturing of horizontal shale gas wells[J]. Fuel, 2024, 359: 130378.

    [4] Yang H, Chang X#, Yang C, et al. Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(5): 1667-1683.

    [5]Chang X#, Wang X, Yang C, et al. Experimental investigation on mode I fracture characteristics of Longmaxi formation shale after cyclic thermal shock and high-temperature acid etching treatments[J]. Engineering Fracture Mechanics, 2024, 295: 109762.

    [6] Yang Y, Liu S, Chang X. Fracture stiffness evaluation with waterless cryogenic treatment and its implication in fluid flowability of treated coals[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104727.

    [7]Chang Xin#, Lin S, Yang C, et al. A Critical Review of ScCO2-enhanced Gas Recovery and Geologic Storage in Shale Reservoirs[J]. Gas Science and Engineering, 2024: 205317.

    [8] Lin S, Chang X#, Wang K, et al. Swelling damage characteristics induced by CO2 adsorption in shale: Experimental and modeling approaches[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024.https://doi.org/10.1016/j.jrmge.2024.09.018.

    [9] Fan X, Su J Z, Chang X, et al. Brittleness evaluation of the inter-salt shale oil reservoir in Jianghan Basin in China[J]. Marine and Petroleum Geology, 2019, 102: 109-115.

    [10] Wu, M, Chang, X#, Guo, Y, et al. Advances, challenges, and opportunities for hydraulic fracturing of deep shale gas reservoirs. Advances in Geo-Energy Research, 2025, 15(1): 1-4..

    [11] Zhao, G., Guo, Y., Wang, L.Chang, X#. et al. Experimental Study on Mechanical, Brittleness, and Fracture Behavior of Deep Shales Subjected to Fracturing Fluid-Shale Interactions at Reservoir Temperature and In-Situ Stress Conditions. Rock Mech Rock Eng 57, 27–44 (2024).

    [12] Chang, X#, Wang,X, Yang,C et al. Vertical height growth mechanism of hydraulic fractures in laminated shale oil reservoirs based on 3D discrete lattice modeling. J Petrol Explor Prod Technol 14, 785–804 (2024).

    [13] Shi, D., Chang, X#, Li, L. et al. Differences in the permeability assessment of the fractured reservoir rocks using the conventional and the rough discrete fracture network modeling. J Petrol Explor Prod Technol 14, 495–513 (2024).

    [14] Qiu, G., Chang, X.#, Li, J. et al. Study on rock brittleness characteristics of deep volcanic reservoir under different confining pressures. J Petrol Explor Prod Technol 14, 453–476 (2024).

    [15] Xin Chang#, Shuangshuang Lin, Chunhe Yang, Yintong Guo, Xiulan Dai; Enhancing shale gas recovery and CO2 sequestration: Microscopic mechanisms of adsorption and diffusion in shale pores. Physics of Fluids 1 November 2024; 36 (11): 116614.

    [16] 常鑫; 袁发勇; 万洋辉; 蒋成白; 豆瑞杰; 李强; 胡毅 ; 一种基于蛭石热膨胀致裂的页岩可压性评价装置及方法, ZL 202211382686.6.

    [17] 常鑫; 胡智文; 郭印同; 郭武豪; 李奎东; 肖佳林 ; 一种水力压裂套管断裂研究方法, ZL 202111185678.8.

    [18] 常鑫; 胡智文; 郭印同; 冒海军; 赵国凯; 邱国洲 ; 一种水溶材料制备模拟实际缝洞型碳酸盐岩实验方法, ZL 202210338953.3.

    [19] 常鑫; 胡智文; 郭印同; 邱国洲; 郭武豪; 赵国凯 ; 一种页岩可视化压裂实验装置及方法, ZL 202111198773.1.

    [20] 常鑫; 邱国洲; 郭印同; 周俊; 胡智文; 郭武豪; 赵国凯; 肖佳林; 李奎东 ; 一种基于DIC技术的页岩可视化压裂实验装置及方法, ZL 202111158233.0.

    [21] 常鑫; 胡智文; 郭印同; 郭武豪; 李奎东; 肖佳林 ; 一种页岩可视化暂堵压裂物理模拟实验装置及方法, ZL 202110926576.0.

    [22] 常鑫; 郭印同; 郭武豪; 张晓宇; 李奎东; 肖佳林 ; 一种页岩水平井分段压裂物理模拟实验的井筒装置及方法, ZL 202110345075.3.

    [23] 常鑫; 郭武豪; 毕振辉; 郭印同; 周俊; 张晓宇; 李奎东; 肖佳林 ; 一种可实现深层页岩多尺度水压裂缝动态监测的实验方法, ZL202011214745.X.

    [24] 常鑫;王兴义;深层页岩地应力实验数据处理软件V1.02024SR0778783 2024.

    [25] 常鑫;王兴义;水平井多簇压裂缝间诱导应力计算软件V1.0; 2024SR0774435 2024.



  • 湖北省科技进步二等奖(排10),2019

    中国岩石力学与工程学会科技进步二等奖(32023

    湖北省科技进步二等奖(32024

    四川省石油与天然气科学技术一等奖(42024


研究方向Research Focus

1、非常规储层岩石力学及地应力测试

2水力压裂裂缝起裂与扩展机理研究

3深部岩体多场耦合损伤断裂机制及数值软件研发

4页岩气、煤层气吸附变形机理研究


社会任职Social Service

《International Journal of Coal Science & Technology》科学编辑

承担科研项目情况Undertaking Research Projects

[1] 国家重点研发项目子课题:地质储氢库适用性及安全关键技术,2024-12至2027-11,160万,在研,主持

[2] 国家自然科学基金青年项目:深层页岩暂堵压裂水力裂缝封堵机理及其转向扩展规律研究,2022-1至2024-12,30万,在研,主持

[3] 页岩油气富集机理与高效开发全国重点实验室开发基金项目:深层页岩多场耦合作用下压裂复杂缝网成缝机制研究,2020-1至2020-12,15万,结题,主持

[4] 国家能源页岩油研发中心开放基金项目:盐岩溶解、结晶及蠕变特性对盐间页岩油储层改造效果的影响机理研究,2018-12至2019-12,30万,结题,主持

[5] 中石化石油工程技术研究院项目:高温岩体岩石力学及裂缝扩展规律研究,2023-1至2024-12,185万元,在研,主持

[6] 中石化江汉油田石油工程技术研究院项目:侏罗系陆相页岩水压物模试验及造缝机理研究,2022-1至2022-12,71万元,结题,主持

[7] 中石油大庆油田勘探院开发研究院项目:基于地质力学的泥页岩可压性评价技术研究,2024-1至2024-12,94万元,在研,主持

[8] 中石化石油勘探开发研究院项目:四川盆地低渗透储层岩石力学参数及地应力分析,2023-1至2024-12,66万元,在研,主持

[9] 中石油勘探开发研究院项目:深层页岩高温高压岩石力学及均衡低风险改造控制机理研究,2023-1至2023-12,37万元,结题,主持

[10] 中石油西南油气田公司项目:深层页岩岩石力学基础理论及压裂工艺优化研究,2021-1至2024-12,1378万元,在研,骨干


代表论著Representative Treatises

[1] Chang X#,Xu E,Guo Y,et al. Experimental study of hydraulic fracture initiation and propagation in deep shale with different injection methods[J]. Journal of Petroleum Science and Engineering,2022,216: 110834.

[2] Qiu G, Chang X#,Li J,et al. Study on the interaction between hydraulic fracture and natural fracture under high stress[J]. Theoretical and Applied Fracture Mechanics,2024,130: 104259.

[3]Chang X#,Wang X,Yang C,et al. Simulation and optimization of fracture pattern in temporary plugging fracturing of horizontal shale gas wells[J]. Fuel, 2024, 359: 130378.

[4] Yang H, Chang X#, Yang C, et al. Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(5): 1667-1683.

[5]Chang X#, Wang X, Yang C, et al. Experimental investigation on mode I fracture characteristics of Longmaxi formation shale after cyclic thermal shock and high-temperature acid etching treatments[J]. Engineering Fracture Mechanics, 2024, 295: 109762.

[6] Yang Y, Liu S, Chang X. Fracture stiffness evaluation with waterless cryogenic treatment and its implication in fluid flowability of treated coals[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104727.

[7]Chang Xin#, Lin S, Yang C, et al. A Critical Review of ScCO2-enhanced Gas Recovery and Geologic Storage in Shale Reservoirs[J]. Gas Science and Engineering, 2024: 205317.

[8] Lin S, Chang X#, Wang K, et al. Swelling damage characteristics induced by CO2 adsorption in shale: Experimental and modeling approaches[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024.https://doi.org/10.1016/j.jrmge.2024.09.018.

[9] Fan X, Su J Z, Chang X, et al. Brittleness evaluation of the inter-salt shale oil reservoir in Jianghan Basin in China[J]. Marine and Petroleum Geology, 2019, 102: 109-115.

[10] Wu, M, Chang, X#, Guo, Y, et al. Advances, challenges, and opportunities for hydraulic fracturing of deep shale gas reservoirs. Advances in Geo-Energy Research, 2025, 15(1): 1-4..

[11] Zhao, G., Guo, Y., Wang, L.Chang, X#. et al. Experimental Study on Mechanical, Brittleness, and Fracture Behavior of Deep Shales Subjected to Fracturing Fluid-Shale Interactions at Reservoir Temperature and In-Situ Stress Conditions. Rock Mech Rock Eng 57, 27–44 (2024).

[12] Chang, X#, Wang,X, Yang,C et al. Vertical height growth mechanism of hydraulic fractures in laminated shale oil reservoirs based on 3D discrete lattice modeling. J Petrol Explor Prod Technol 14, 785–804 (2024).

[13] Shi, D., Chang, X#, Li, L. et al. Differences in the permeability assessment of the fractured reservoir rocks using the conventional and the rough discrete fracture network modeling. J Petrol Explor Prod Technol 14, 495–513 (2024).

[14] Qiu, G., Chang, X.#, Li, J. et al. Study on rock brittleness characteristics of deep volcanic reservoir under different confining pressures. J Petrol Explor Prod Technol 14, 453–476 (2024).

[15] Xin Chang#, Shuangshuang Lin, Chunhe Yang, Yintong Guo, Xiulan Dai; Enhancing shale gas recovery and CO2 sequestration: Microscopic mechanisms of adsorption and diffusion in shale pores. Physics of Fluids 1 November 2024; 36 (11): 116614.

[16] 常鑫; 袁发勇; 万洋辉; 蒋成白; 豆瑞杰; 李强; 胡毅 ; 一种基于蛭石热膨胀致裂的页岩可压性评价装置及方法, ZL 202211382686.6.

[17] 常鑫; 胡智文; 郭印同; 郭武豪; 李奎东; 肖佳林 ; 一种水力压裂套管断裂研究方法, ZL 202111185678.8.

[18] 常鑫; 胡智文; 郭印同; 冒海军; 赵国凯; 邱国洲 ; 一种水溶材料制备模拟实际缝洞型碳酸盐岩实验方法, ZL 202210338953.3.

[19] 常鑫; 胡智文; 郭印同; 邱国洲; 郭武豪; 赵国凯 ; 一种页岩可视化压裂实验装置及方法, ZL 202111198773.1.

[20] 常鑫; 邱国洲; 郭印同; 周俊; 胡智文; 郭武豪; 赵国凯; 肖佳林; 李奎东 ; 一种基于DIC技术的页岩可视化压裂实验装置及方法, ZL 202111158233.0.

[21] 常鑫; 胡智文; 郭印同; 郭武豪; 李奎东; 肖佳林 ; 一种页岩可视化暂堵压裂物理模拟实验装置及方法, ZL 202110926576.0.

[22] 常鑫; 郭印同; 郭武豪; 张晓宇; 李奎东; 肖佳林 ; 一种页岩水平井分段压裂物理模拟实验的井筒装置及方法, ZL 202110345075.3.

[23] 常鑫; 郭武豪; 毕振辉; 郭印同; 周俊; 张晓宇; 李奎东; 肖佳林 ; 一种可实现深层页岩多尺度水压裂缝动态监测的实验方法, ZL202011214745.X.

[24] 常鑫;王兴义;深层页岩地应力实验数据处理软件V1.02024SR0778783 2024.

[25] 常鑫;王兴义;水平井多簇压裂缝间诱导应力计算软件V1.0; 2024SR0774435 2024.



获奖及荣誉Awards and Honors

湖北省科技进步二等奖(排10),2019

中国岩石力学与工程学会科技进步二等奖(32023

湖北省科技进步二等奖(32024

四川省石油与天然气科学技术一等奖(42024