黄光平
个人信息Personal Information

性别:

职称: 研究员

职务:

学历: 博士研究生

电话:

传真:

电子邮件: gphuang@whrsm.ac.cn

通讯地址:

湖北省武汉市武昌区水果湖街小洪山2号 中国科学院武汉岩土力学研究所

简 历Personal Profile

  • 黄光平,博士,研究员,博士生导师,国家海外高层次青年人才计划入选者,湖北省创新人才计划入选者。2014年获太原理工大学采矿工程学士学位,2021年获加拿大阿尔伯塔大学矿业工程博士学位。2021年10月至2024年8月先后在阿尔伯塔大学土木与环境工程学院任博士后、讲师(Teaching Assistant Professor)及副研究员(Research Associate)。2024年9月入职中国科学院武汉岩土力学研究所。

    主要研究方向包括矿山固废处置与资源化利用、低碳水泥与混凝土开发、矿山支护材料与装备研发等。近年来主持/参与国家自然科学基金、国家重点研发计划课题、加拿大自然科学与工程研究委员会(NSERC)等项目共计10余项,在Cement and Concrete Research,Cement and Concrete Composites,Construction and Building Materials,Journal of Rock Mechanics and Geotechnical Engineering, Energy等建筑材料、岩土力学及能源领域权威期刊发表高水平SCI论文30余篇,包括中国科学院一区Top 期刊论文17篇。受邀为Cement and Concrete Composites,Construction and Building Materials,International Journal of Heat and Mass Transfer,Journal of Rock Mechanics and Geotechnical Engineering,Journal of Cleaner Production 等中国科学院一区Top期刊审稿。担任Journal of Rock Mechanics and Geotechnical Engineering期刊编辑及《Green and Smart Mining Engineering》期刊青年编委。

    热忱欢迎采矿工程、土木工程、材料科学与工程(无机)、矿物加工、力学及计算机等相关学科专业的学生报考硕士、博士研究生。同时欢迎海内外相关专业博士毕业生加盟从事博士后研究,联系方式:gphuang@whrsm.ac.cn


  • 研究方向Research Focus
  • 社会任职Social Service
  • 承担科研项目情况Undertaking Research Projects
  • 1.矿山固废处置与资源化利用

    2.低碳水泥与混凝土开发

    3.矿山支护材料与装备研发

  • 1、国家海外高层次青年人才计划,项目负责人,执行时间:2025-2027

    2、湖北省创新人才计划,项目负责人,执行时间:2025-2027

    3、国家重点研发计划课题:微生物-植物活化煤矸石制备生态修复材料及应用调控,课题负责人,执行时间:2025-2028

  • 代表论著Representative Treatises
  • 获奖及荣誉Awards and Honors
  • 1. Huang G.,Zhao,J,Lambiv Dzemua,G.,Cairns,S.,Normandeau,P.,Liu,W.V.*,2024. Utilization of local raw materials and mine waste to manufacture cement in Northwest Territories,Canada. Advances in Cement Research © ICE Virtual Library. (https://doi.org/10.1680/jadcr.23.00195)

    2. Huang,G.,Guo Y.,Bescher E.,Gupta,R. and Liu,W.V.*,2023. Numerical modeling of temperature profiles in hardening calcium sulfoaluminate cement-based mortars for permafrost region applications. Journal of Sustainable Cement-Based Materials. © Taylor & Francis.(https://doi.org/10.1080/21650373.2022.2056541)

    3. Huang,G.,Zhao,J.,Gupta,R. and Liu,W.V.*,2022. Influence of tartaric acid dosage on the early-age and long-term properties of calcium sulfoaluminate belite cement composites. Construction and Building Materials,356,p.129257. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2022.129257)

    4. Huang,G.,Pudasainee,D.,Gupta,R. and Liu,W.V.*,2021. Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures. Construction and Building Materials,274,p.122082. © Elsevier.  

    (https://doi.org/10.1016/j.conbuildmat.2020.122082)

    5. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*, 2021.Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: its effects on hydration,setting,workability,and strength development. Frontiers of Structural and Civil Engineering. © Springer. (https://doi.org/10.1007/s11709-021-0770-4)

    6. Huang,G., Gupta,R. and Liu,W.V.*, 2021. Effects of sodium gluconate on hydration reaction,setting,workability,and strength development of calcium sulfoaluminate cement mixtures. Journal of Sustainable Cement-Based Materials. ©Taylor & Francis.

    (https://doi.org/10.1080/21650373.2021.1936269)

    7. Huang,G.,Pudasainee,D.,Gupta,R. and Liu,W.V.*,2020. Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 243,p.118201. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2020.118201)

    8. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*,2020. The performance of calcium sulfoaluminate cement for preventing early-age frost damage. Construction and Building Materials, 254,p.119322. © Elsevier.  

    (https://doi.org/10.1016/j.conbuildmat.2020.119322 )

    9. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*, 2019. Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures. Construction and Building Materials,224,pp.493-503. © Elsevier.

    (https://doi.org/10.1016/j.conbuildmat.2019.07.085 )

    10. Gholami,K.,Feng,Z.,Zhao,J.,Huang,G.*,Liu,W.V.*,2024.Developing thermal insulation concrete with enhanced mechanical strength using belitic calcium sulfoaluminate cement and wood chips. Construction and Building Materials, 447,p.138146. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2024.138146), IF=7

    11. Feng,Z.,Zhao,J.,Huang,G.*,Liu,W.V.*,2024. Influence of water-to-binder ratios on the performance of limestone calcined clay cement-based paste for mining applications. Green and Smart Mining Engineering. (https://doi.org/10.1016/j.gsme.2024.08.001)

    12. Zhao,J., Huang,G., Guo,Y.,Feng,Z.,Gupta,R.,and Liu,W.V.*,2024. Development of a novel cement-based grout with enhanced thermal and sealing performance for borehole heat exchangers. Energy and Buildings © Elsevier. (https://doi.org/10.1016/j.enbuild.2023.113754)

    13. Yang,H.,Wang,L.,Yang,C.,Zhao,J.,Huang,G., Guo,Y.,Liu,W.V.*,2024. Mechanical Performance of Oil-Well Cement Slurries Cured and Tested under High-Temperatures and High-Pressures for Deep-Well Applications. Cement and Concrete Research © Elsevier.  

    (https://doi.org/10.1016/j.cemconres.2023.107355)

    14. Arachchilage,C.B.,Huang,G., Fan,C.,and Liu,W.V.*,2023. Forecasting unconfined compressive strength of calcium sulfoaluminate cement mixtures using ensemble machine learning techniques integrated with shapely-additive explanations. Construction and Building Materials © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2023.134083)

    15. Guo,Y.,Huang,G. and Liu,W.V.*,2023. A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground. Energy,274,p.127373. © Elsevier. (https://doi.org/10.1016/j.energy.2023.127373)

    16. Arachchilage,C.B.,Fan,C.,Zhao,J.,Huang,G. and Liu,W.V.*,2023. A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill. Journal of Rock Mechanics and Geotechnical Engineering. © Elsevier.

    (https://doi.org/10.1016/j.jrmge.2022.12.009)

    17. Wu,L.,Huang,G.,Liu,W.V.*,2021. Methods to evaluate resistance of cement-based materials against microbially induced corrosion: A state-of-the-art review,Cement and Concrete Composites 123 (2021) 104208. © Elsevier. (https://doi.org/10.1016/j.cemconcomp.2021.104208)

    18. Wu,L.,Huang,G.,Liu,W.V.*,2020. Performance evaluation of nano-silica and silica fume on enhancing the acid resistance of cement-based composites,Journal of Central South University,2020,27. pp. 3821–3838. © Springer. (https://doi.org/10.1007/s11771-020-4473-0)

    19. Zhao,J.,Fan,C.,Huang,G.,Guo,Y.,Arachchilage,C.B.,Gupta,R.,Liu,W.V.*,2024. Machine Learning-Assisted Characterization of the Thermal Conductivity of Cement-Based Grouts for Borehole Heat Exchangers. Construction and Building Materials © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2024.138506)

    20. Arachchilage,C. B.,Huang,G., Zhao,J.,Fan,C.,& Liu,W. V.,2024. Hybrid extreme gradient boosting regressor models for the multi-objective mixture design optimization of cementitious mixtures incorporating mine tailings as fine aggregates. Cement and Concrete Composites,154,105787. © Elsevier. (https://doi.org/10.1016/j.cemconcomp.2024.105787)


研究方向Research Focus

1.矿山固废处置与资源化利用

2.低碳水泥与混凝土开发

3.矿山支护材料与装备研发

社会任职Social Service
承担科研项目情况Undertaking Research Projects

1、国家海外高层次青年人才计划,项目负责人,执行时间:2025-2027

2、湖北省创新人才计划,项目负责人,执行时间:2025-2027

3、国家重点研发计划课题:微生物-植物活化煤矸石制备生态修复材料及应用调控,课题负责人,执行时间:2025-2028

代表论著Representative Treatises

1. Huang G.,Zhao,J,Lambiv Dzemua,G.,Cairns,S.,Normandeau,P.,Liu,W.V.*,2024. Utilization of local raw materials and mine waste to manufacture cement in Northwest Territories,Canada. Advances in Cement Research © ICE Virtual Library. (https://doi.org/10.1680/jadcr.23.00195)

2. Huang,G.,Guo Y.,Bescher E.,Gupta,R. and Liu,W.V.*,2023. Numerical modeling of temperature profiles in hardening calcium sulfoaluminate cement-based mortars for permafrost region applications. Journal of Sustainable Cement-Based Materials. © Taylor & Francis.(https://doi.org/10.1080/21650373.2022.2056541)

3. Huang,G.,Zhao,J.,Gupta,R. and Liu,W.V.*,2022. Influence of tartaric acid dosage on the early-age and long-term properties of calcium sulfoaluminate belite cement composites. Construction and Building Materials,356,p.129257. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2022.129257)

4. Huang,G.,Pudasainee,D.,Gupta,R. and Liu,W.V.*,2021. Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures. Construction and Building Materials,274,p.122082. © Elsevier.  

(https://doi.org/10.1016/j.conbuildmat.2020.122082)

5. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*, 2021.Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: its effects on hydration,setting,workability,and strength development. Frontiers of Structural and Civil Engineering. © Springer. (https://doi.org/10.1007/s11709-021-0770-4)

6. Huang,G., Gupta,R. and Liu,W.V.*, 2021. Effects of sodium gluconate on hydration reaction,setting,workability,and strength development of calcium sulfoaluminate cement mixtures. Journal of Sustainable Cement-Based Materials. ©Taylor & Francis.

(https://doi.org/10.1080/21650373.2021.1936269)

7. Huang,G.,Pudasainee,D.,Gupta,R. and Liu,W.V.*,2020. Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 243,p.118201. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2020.118201)

8. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*,2020. The performance of calcium sulfoaluminate cement for preventing early-age frost damage. Construction and Building Materials, 254,p.119322. © Elsevier.  

(https://doi.org/10.1016/j.conbuildmat.2020.119322 )

9. Huang,G., Pudasainee,D.,Gupta,R. and Liu,W.V.*, 2019. Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures. Construction and Building Materials,224,pp.493-503. © Elsevier.

(https://doi.org/10.1016/j.conbuildmat.2019.07.085 )

10. Gholami,K.,Feng,Z.,Zhao,J.,Huang,G.*,Liu,W.V.*,2024.Developing thermal insulation concrete with enhanced mechanical strength using belitic calcium sulfoaluminate cement and wood chips. Construction and Building Materials, 447,p.138146. © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2024.138146), IF=7

11. Feng,Z.,Zhao,J.,Huang,G.*,Liu,W.V.*,2024. Influence of water-to-binder ratios on the performance of limestone calcined clay cement-based paste for mining applications. Green and Smart Mining Engineering. (https://doi.org/10.1016/j.gsme.2024.08.001)

12. Zhao,J., Huang,G., Guo,Y.,Feng,Z.,Gupta,R.,and Liu,W.V.*,2024. Development of a novel cement-based grout with enhanced thermal and sealing performance for borehole heat exchangers. Energy and Buildings © Elsevier. (https://doi.org/10.1016/j.enbuild.2023.113754)

13. Yang,H.,Wang,L.,Yang,C.,Zhao,J.,Huang,G., Guo,Y.,Liu,W.V.*,2024. Mechanical Performance of Oil-Well Cement Slurries Cured and Tested under High-Temperatures and High-Pressures for Deep-Well Applications. Cement and Concrete Research © Elsevier.  

(https://doi.org/10.1016/j.cemconres.2023.107355)

14. Arachchilage,C.B.,Huang,G., Fan,C.,and Liu,W.V.*,2023. Forecasting unconfined compressive strength of calcium sulfoaluminate cement mixtures using ensemble machine learning techniques integrated with shapely-additive explanations. Construction and Building Materials © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2023.134083)

15. Guo,Y.,Huang,G. and Liu,W.V.*,2023. A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground. Energy,274,p.127373. © Elsevier. (https://doi.org/10.1016/j.energy.2023.127373)

16. Arachchilage,C.B.,Fan,C.,Zhao,J.,Huang,G. and Liu,W.V.*,2023. A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill. Journal of Rock Mechanics and Geotechnical Engineering. © Elsevier.

(https://doi.org/10.1016/j.jrmge.2022.12.009)

17. Wu,L.,Huang,G.,Liu,W.V.*,2021. Methods to evaluate resistance of cement-based materials against microbially induced corrosion: A state-of-the-art review,Cement and Concrete Composites 123 (2021) 104208. © Elsevier. (https://doi.org/10.1016/j.cemconcomp.2021.104208)

18. Wu,L.,Huang,G.,Liu,W.V.*,2020. Performance evaluation of nano-silica and silica fume on enhancing the acid resistance of cement-based composites,Journal of Central South University,2020,27. pp. 3821–3838. © Springer. (https://doi.org/10.1007/s11771-020-4473-0)

19. Zhao,J.,Fan,C.,Huang,G.,Guo,Y.,Arachchilage,C.B.,Gupta,R.,Liu,W.V.*,2024. Machine Learning-Assisted Characterization of the Thermal Conductivity of Cement-Based Grouts for Borehole Heat Exchangers. Construction and Building Materials © Elsevier. (https://doi.org/10.1016/j.conbuildmat.2024.138506)

20. Arachchilage,C. B.,Huang,G., Zhao,J.,Fan,C.,& Liu,W. V.,2024. Hybrid extreme gradient boosting regressor models for the multi-objective mixture design optimization of cementitious mixtures incorporating mine tailings as fine aggregates. Cement and Concrete Composites,154,105787. © Elsevier. (https://doi.org/10.1016/j.cemconcomp.2024.105787)


获奖及荣誉Awards and Honors